Adaptive Spectral Reconnaissance Program (ASRP)

Defense Science & Technology Seminar Emerging Hyperspectral Technologies -New Eyes for the Warfighter

February 18, 2000

LTC Bradford Tousley

btousley@darpa.mil 703.248.1513

ASRP Tactical Vision

ASRP Target Detection and Cueing Concept

Hyperspectral detection of camouflaged and concealed mobile tactical vehicles

Algorithm-based detection processing

Target Detection Challenge(Aided Target Recognition)

Standard metric: P_D vs. FAR Goal: High P_D and Low FAR Benefit: Less Warfighter Load

Adaptive Spectral Reconnaissance Program (ASRP) FY97-FY00

- Goal: Build the technical underpinnings for future MSI/HSI systems to counter camouflaged, and concealed surface targets
- Approach: Focus attention on 4 key technology thrusts
 - Analytic models and algorithms
 - Data analysis/ signature database
 - LWIR sensor development
 - Data collections / demonstrations
- Plan: Transition HS technology to airborne platforms (TUAV, ARL/ACS, HAE UAV and MAE UAV)
- **Legacy:**
 - Performance prediction tools
 - Robust-low FAR target detection algorithms
 - "Book" on VNIR/SWIR target detection
 - Phenomenology database

Technology Challenges

- Models and tools for performance prediction/trades
- Algorithms (high P_D /low FAR) → Reduces analyst load
- Compact LWIR HSI and TIR imager sensors
 - Spectral/spatial resolution, low NESR (SWAP)
- High-throughput real-time airborne processors

Modeling

■Hyperspectral System Image Model (HySIM)

■Scene generation optimized for wide area surveillance and localized regions

Preliminary Modeling Results (NVIS/VNIR)

Actual

Algorithm Development

Challenge: Target detection algorithms must overcome the high variability of targets and backgrounds in a scene; multiple algorithms and fusion offer a potential solution

Approach: Evaluate current SOA, include new algorithms (Red Team recommend)*

Implement multiple algorithms (>3) using fusion and in real time
Include advanced preprocessing, core detection, and postprocessing

Evaluating

- Anomaly Detection
 - R-X (local/stochastic)
- Clustering
 - SEM (global/stochastic)
- Linear Unmixing
 - ORASIS (global/deterministic)
- Recognition /Atmos. Correction
 - PALM/VANTAGE (reflective)*
 - ISAC (emissive)*

Analysis & Assembly

Analysis &

Fusion

(High P_D/Low FAR)

Verification

- Data collection and analysis
 - flights
 - ground truth
 - image truth
 - model comparison
 - validation
- Significant target and background data
 - − 9 collects ~1.5TBytes

Fusion

- Algorithms are fused with joint decision statistic
- Goodness-of-fit over local/regional areas determines applicability of each particular algorithm

Fusion Results NVIS Lechiguilla Scene

- AND/OR fusions of RX and SEM (at equal-Pfa thresholds) perform worse than the best single detector (SEM)
- Joint fusion threshold tests outperform RX and SEM in the high-Pd regime

HSI Military Payoff

- Addresses the critical gap in the detection of camouflaged vehicles in the open and targets concealed in treelines and in shadows --- Kosovo shortcoming
- Improvement in tactical productivity and situation awareness through "aided" target detection and recognition capabilities
- Enhancement of P_k and shortened time-lines in difficult target detection scenarios by cueing PGMs and other weapons platforms